On the class numbers of totally imaginary quadratic extensions of totally real fields

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quadratic extensions of totally real quintic fields

In this work, we establish lists for each signature of tenth degree number fields containing a totally real quintic subfield and of discriminant less than 1013 in absolute value. For each field in the list we give its discriminant, the discriminant of its subfield, a relative polynomial generating the field over one of its subfields, the corresponding polynomial over Q, and the Galois group of ...

متن کامل

Class number in totally imaginary extensions of totally real function fields

We show that, up to isomorphism, there are only finitely many totally real function fields which have any totally imaginary extension of a given ideal class number.

متن کامل

Zp-Extensions of Totally Real Fields

We continue our investigations into complex and p-adic variants of H. M. Stark’s conjectures [St] for an abelian extension of number fields K/k. We have formulated versions of these conjectures at s = 1 using so-called ‘twisted zeta-functions’ (attached to additive characters) to replace the more usual L-functions. The complex version of the conjecture was given in [So3]. In [So4] we formulated...

متن کامل

Class numbers of imaginary quadratic fields

The classical class number problem of Gauss asks for a classification of all imaginary quadratic fields with a given class number N . The first complete results were for N = 1 by Heegner, Baker, and Stark. After the work of Goldfeld and Gross-Zagier, the task was a finite decision problem for any N . Indeed, after Oesterlé handled N = 3, in 1985 Serre wrote, “No doubt the same method will work ...

متن کامل

Class numbers of ray class fields of imaginary quadratic fields

Let K be an imaginary quadratic field with class number one and let p ⊂ OK be a degree one prime ideal of norm p not dividing 6dK . In this paper we generalize an algorithm of Schoof to compute the class numbers of ray class fields Kp heuristically. We achieve this by using elliptic units analytically constructed by Stark and the Galois action on them given by Shimura’s reciprocity law. We have...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the American Mathematical Society

سال: 1972

ISSN: 0002-9904

DOI: 10.1090/s0002-9904-1972-12859-3